Department of Chemistry, University of Pennsylvania

5,8-Quinoxalinediones. IV.

Synthesis of Some N-Substituted 6-Amino-5,8-quinoxalinediones (1)

Kathleen Heidere Ford (2) and Madeleine M. Joullie

The interest in quinones and their chemistry has increased over the years, since they have been found to possess properties applicable to many aspects of research and industry. A group of ethyleneiminosubstituted quinones prepared by Gauss and Petersen have shown antitumor activity (3a, b). The purpose of this work was to study the reactions and products of various amines with certain quinoxalinediones and to investigate the potential physiological activity of the aminoquinones. Although many aminoquinones have been prepared by the nucleophilic replacement of halogens (4) or alkoxy groups (5), primary and secondary amines are capable of forming 1,4-addition products with quinones. Theoretically, the reaction of a quinone with an amine should produce equal amounts of the substituted quinone and parent hydroquinone since electron-donating groups lower the oxidation potential of the systems. This results in the oxidation of the intermediate hydroquinone by the unsubstituted quinone. In the present work, the aminohydroquinones formed were immediately oxidized to the corresponding quinone. The parent 5,8-dihydroxyquinoxaline was also formed but only in some cases attempts were made to isolate this hydroquinone. The identification of this compound substantiated the fact that the oxidizing agent was the parent quinone. In general, the yields obtained were higher for secondary rather than primary amines. Since primary amines are weaker bases than secondary amines, nucleophilic attack on the quinone is slower and competing reactions can occur. The use of an aprotic solvent such as 1,2-dimethoxyethane is essential to the success of these 1,4addition reactions.

The infrared spectra of the compounds prepared were examined in chloroform solution. The products derived from primary amines showed N-H stretching peaks around 3380-3360 cm⁻¹. All compounds showed split carbonyl peaks at around 1693-1683 cm⁻¹ and 1640-1630 cm⁻¹. Ring stretching vibrations were observed in the 1600-1450 cm⁻¹ region and C-N stretching vibrations were found around 1330 cm⁻¹.

EXPERIMENTAL

All melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. The elemental analyses

were carried out by Dr. A. Bernhardt, Max Planck Institute, 433 Mülheim (Ruhr), West Germany. Infrared spectra were recorded on a Perkin-Elmer double beam 521 recording spectrophotometer.

5,8-Quinoxalinediones.

Compounds I, II, and III were prepared by a five step synthesis described by Levy (6). Compound I was obtained in 47% yield, m.p. 193^-196° dec. (lit. (6) m.p. 182° dec.). Infrared bands were observed at ν max (CHCl3), 1688, 1678 (C=O), 1605, 1540 (ring stretching) 1440, 1390, 1355 (C-H deformation) and 1325 cm $^{-1}$ (C-N stretching). Compound II was obtained in 57% yield, m.p. 171^-177° dec. (lit. (7a) m.p. 155^-160° dec.). Infrared bands were observed at ν max (CHCl3), 1685 (C=O), 1603, 1530 (ring stretching), and 1313 cm $^{-1}$ (C-N stretching). Compound III was obtained in 51% yield, m.p. 224^-227° (lit. (7b) m.p. 230^-232°). Infrared bands were observed at 1683 (C=O), 1600, 1513 (ring stretching), and 1325 cm $^{-1}$ (C-N stretching).

A. Preparation of N-Substituted 6-Amino-5,8-quinoxalinediones from I, II, or III and Secondary Amines (Table I). 6-Morpholino-2,3-dimethyl-5,8-quinoxalinedione (VI). Typical Procedure.

This procedure was used to prepare compounds IV, V, XI and XIII. 2,3-Dimethyl-5,8-quinoxalinedione (I) (2 g., 0.0106 mole) was partially dissolved in 165 ml. of 1,2-dimethoxyethane in a 250 ml. three-necked, round-bottomed flask equipped with a reflux condenser, dropping funnel and a gas inlet tube.

A solution of 4 ml. of morpholine (3.99 g., 0.0450 mole) in 10 ml. of 1,2-dimethoxyethane was added dropwise to the quinone. Dry nitrogen was bubbled through the reaction mixture for 2 hours. The red precipitate was collected by filtration and air-dried. The filtrate produced an additional amount of product after standing for one week.

B. Preparation of N-Substituted 6-Amino-5,8-quinoxalinediones from I and Primary amines. (Table I). 6-(p-Toluidino-2,3-dimethyl-5,8-quinoxalinedione (X). Typical Procedure.

Compound I (1.5 g., 0.008 mole) was partially dissolved in 300 ml. of 1,2-dimethoxyethane in the same apparatus described in A. A solution of 2.6 g. (0.0265 mole) of p-toluidine in 20 ml. of 1,2-dimethoxyethane was added dropwise. Dry nitrogen gas was bubbled through the mixture for 18 hours while the reaction mixture was refluxed gently. The solution was evaporated to one-third of its original volume and a yellow precipitate was collected by filtration, m.p. 215-220°. This product was identified as 2,3-dimethyl-5,8-dihydroxyquinoxaline by comparing its physical properties to those of an authentic sample. After the filtrate stood for several days a black precipitate formed and was collected by filtration. Evaporation of the second filtrate yielded an additional amount of X.

Acknowledgment.

This work was supported in part by a grant (AM 07684-03) from the National Institutes of Health, U. S. Public Health Service.

REFERENCES

(1) Paper 1: M. R. W. Levy and M. M. Joullié, J. Heterocyclic Chem., 1, 171 (1964). Paper II: W. F. Gum, Jr. and M. M. Joullié, J. Org. Chem., 30, 2583 (1965).

N-Substituted 6-Amino-5,8-quinoxalinedione

XI, B=H

Compound Yield, & (a) M. D. J. *C Formula Calcd. Found Ca		nds n-1	1595,	1535,	1543	1600,	1610,	1332	1605,	1330	1615,	1550	1515	stals.
Trield, δ (a) M. p., °C Formula Calcd, Found Calcd, Each Calcd,		ed Bar	1630,	1565,	1575,	1630,	1640,	1490,				1533 1578,	1568,	ck cry
Trield, δ (a) M. p., °C Formula Calcd, Found Calcd, Each Calcd,		Infran x (CHC	1683, 1495	1615,	1635,		1693,	1505,	1690,	1505,	1693,	1640,	1635,	() Bla
Compound No. Tield, & (a) M. D., "C Formula VI 45 (b) 199-202 C ₄ H ₄ N ₃ O ₂ (c) 64.19 (e4.07 5.39 5.60 17.27 17.20 VI 83 (b) 199-202 C ₄ H ₄ N ₃ O ₂ (c) 64.26 65.29 5.88 (c) 4 16.38 15.22 VII 83 (b) 256-262 C ₄ H ₄ N ₃ O ₂ (c) 64.26 61.46 4.07 15.38 11.56 VII 44 (c) 264-266 C ₄ H ₄ N ₃ O ₂ (c) 61.25 61.46 3.86 3.88 11.73 11.56 X 51 (c) 224-230 C ₄ H ₄ N ₃ O ₂ (c) 69.61 69.79 5.15 5.22 14.38 14.24 XI 89 (b) 220-222 C ₄ H ₄ N ₃ O ₃ (c) 69.61 69.79 5.15 5.22 14.38 17.04 XI 89 (b) 226-222 C ₄ H ₄ N ₃ O ₃ (c) 69.61 69.79 5.15 5.22 14.38 17.04 XI 65 (b) 226 C ₄ H ₄ N ₃ O ₃ (c) 69.61 69.79 69.71 69.79 17.13 17.04 XI 89 (b) 226-222 C ₄ H ₄ N ₃ O ₃ (c) 69.61 69.79 72.53 72.11 10.57 10.64 (a) Yields are of recrystallized products. All compounds were recrystallized from 1.2-dimethoxyethane. (b) Red color 1.8° 6.22 (c) 67.6° (c) 7.8° 11.30. Found: 11.14 (c) 6.21 67.23 72.231 Found:		Main v ma	3380,	1685, 1473	1688,	3350,	3355,	1590,	3350,	1585,	3360,	1693,	1690,	rystals. (c 22,27,
Compound No. Yield, & (a) M. P., *C Formula V 79 (b) 193.5 C ₁₂ H ₁₃ N ₃ O ₂ F (d) 65.36 65.29 5.88 6.04 16.33 VI 83 (b) 199-202 C ₁₄ H ₁₃ N ₃ O ₂ F (d) 64.63 64.44 4.07 4.18 14.14 VI 83 (b) 256-262 C ₁₄ H ₁₃ N ₃ O ₂ F (d) 64.63 64.44 4.07 4.18 14.14 VII 47 (c) 260-262 C ₁₄ H ₁₃ N ₃ O ₂ F (d) 65.36 65.39 5.16 15.38 IX 44 (c) 264-266 C ₁₄ H ₁₃ N ₃ O ₂ F (f) 69.61 69.79 5.15 5.22 11.73 XI 89 (b) 220-222 C ₁₄ H ₁₃ N ₃ O ₂ F (f) 69.61 69.79 5.15 5.22 14.38 XI 89 (b) 220-222 C ₁₄ H ₁₃ N ₃ O ₃ F (f) 69.61 69.79 5.15 5.22 14.38 XI 89 (b) 220-222 C ₁₄ H ₁₃ N ₃ O ₃ F (f) 72.53 72.31 4.82 4.77 10.57 XI 89 (b) 220-222 C ₁₄ H ₁₃ N ₃ O ₃ F (f) 72.53 72.31 4.82 4.77 10.57 AN Sinds are of recrystallized products. All compounds were recrystallized from 1.2-dimethoxyethane. (b) Calcd. F, %: 6.39. Found: 6.22 (e) Calcd. Cl, %: 11.30. Found: 11.14 (f) Calcd. Br, %: 22.31.		% Found	17.20	16.25	15,32	14.24	13.23		11.56		14. 27	17.04	10.64	Found:
Compound No. Yield, % (a) M.p., °C Formula Cy % H, % Calcd. Found Calcd. Found Calcd. Found Cy % H, % Calcd. Found Calcd. Fou		N, Calod.	17.27	16.33	15.38	14.14	13.39		11.73		14.33	17.13	10.57	ethane. (b 6: 22.31.
Compound No. Yield, & (a) M. p., °C Formula V		% Found	5.60	6.04	5.70	4.18	3.88		3.52		5.22	5.70	4.77	dimethoxy lcd. Br, 9
Compound No. Yield, & (a) M.p., °C Formula V 79 (b) 193.5 C ₁₄ H ₁₅ N ₅ O ₂ 64.19 64.07 VI 83 (b) 199-202 C ₁₄ H ₁₅ N ₅ O ₂ 61.53 65.29 VI 83 (c) 258-260 C ₁₄ H ₁₅ N ₅ O ₂ 61.53 61.48 VII 47 (c) 260-262 C ₁₄ H ₁₅ N ₅ O ₂ F (d) 64.63 64.44 VIII 47 (c) 264-266 C ₁₆ H ₁₅ N ₅ O ₂ Br (f) 53.65 53.72 X 51 (c) 224-230 C ₁₇ H ₁₅ N ₅ O ₂ 69.61 69.79 X 51 (c) 220-222 C ₁₂ H ₁₅ N ₅ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₅ N ₅ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₅ N ₅ O ₃ XI 89 (b) 226 C ₂₄ H ₁₅ N ₅ O ₃ XI 89 (b) 226 C ₂₄ H ₁₅ N ₅ O ₃ XI 65 (b) 226 C ₂₄ H ₁₅ N ₅ O ₃ XI 65 (b) 226 C ₂₄ H ₁₅ N ₅ O ₃ XI 72.53 72.31 (a) Yields are of recrystallized products. All compounds were recrystallized from Color. %: 11.130. Found: 11.14.		H, Calcd.	5.39	5.88	5, 53	4.07	3.86		3.38		5.15	4.52	4.82	om 1,2-
Compound No. Yield, & (a) M. p., °C Formula IV 45 (b) 193.5 C ₁₄ H ₁₅ N ₃ O ₂ 64.19 VI 83 (b) 184-189 C ₁₄ H ₁₅ N ₃ O ₂ 65.36 VI 83 (c) 258-260 C ₁₆ H ₁₂ N ₃ O ₂ F (d) 64.63 VII 83 (c) 258-260 C ₁₆ H ₁₂ N ₃ O ₂ F (d) 64.63 VII 47 (c) 260-262 C ₁₆ H ₁₂ N ₃ O ₂ F (d) 64.63 IX 44 (c) 264-266 C ₁₆ H ₁₂ N ₃ O ₂ Br (f) 53.65 IX 51 (c) 224-230 C ₁₇ H ₁₅ N ₃ O ₂ Br (f) 69.61 X 51 (c) 224-230 C ₁₇ H ₁₅ N ₃ O ₃ 77.53 XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 226 C ₂₄ H ₁₅ N ₃ O ₃ 77.53 XI 89 (b) 226 C ₂₄ H ₁₅ N ₃ O ₃ 77.53 XI 89 (b) 226 C ₂₄ H ₁₅ N ₃ O ₃ 77.53 XI 89 (b) 226 C ₂₄ H ₁₅ N ₃ O ₃ 77.53 XI 89 (b) 226 C ₂₄ H ₁₅ N ₃ O ₃ 77.53 XI 89 (b) 226 C ₂₄ H ₁₅ N ₃ O ₃ 77.53		% Found	64.07	65.29	61.48	64.44	61.46		53.72		69. 79	58.82	72.31	stallized fr d: 11.14.
Compound No. Yield, % (a) M. p., °C Formula IV 45 (b) 193.5 C ₁₉ H ₁₃ N ₃ O ₂ VI 83 (b) 199-202 C ₁₄ H ₁₅ N ₃ O ₂ VII 83 (c) 258-260 C ₁₆ H ₁₂ N ₃ O ₂ F (d) VIII 47 (c) 260-262 C ₁₆ H ₁₂ N ₃ O ₂ F (d) VIII 47 (c) 264-266 C ₁₆ H ₁₂ N ₃ O ₂ F (f) X 51 (c) 224-230 C ₁₇ H ₁₁ N ₃ O ₂ Br (f) X 51 (c) 224-230 C ₁₇ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 226 C ₂₄ H ₁₃ N ₃ O ₃ XI 89 (b) 226 C ₂₄ H ₁₃ N ₃ O ₃ XI 65 (b) 226 C ₂₄ H ₁₃ N ₃ O ₃ XI 75 C ₁₅ H ₁₁ N ₃ O ₃ XI 75 C ₁₅ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 C ₁₂ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃ XI 89 (b) 220-222 (c) C ₁₁ H ₁₁ N ₃ O ₃	•=\=•	Calcd.	64.19	65.36	61.53	64.63	61.25		53,65		69.61	58.77	72.53	re recrys
Compound No. Yield, % (a) M. p., °C IV 45 (b) 193.5 VI 83 (b) 199-202 VII 83 (c) 258-260 VIII 47 (c) 260-262 IX 44 (c) 264-266 X 51 (c) 224-230 XI 89 (b) 220-222 XI 65 (b) 226 (a) Yields are of recrystallized products. (b) Calcd. F, %: 6.39. Found: 6.22. (c)		Formula	$C_{13}H_{13}N_{3}O_{2}$	CMH15N3O2	C14H15N3O3	C16H12N3O2F (d)	C14H12N3O2Cl (e)		C ₁₆ H ₁₂ N ₃ O ₂ Br (f)		$C_{17}H_{15}N_3O_2$	C ₁₂ H ₁₁ N ₃ O ₃	CMH19N3O3	All compounds we: Calcd. Cl, %: 11.3
Compound No. Yield, % (a) IV 45 (b) VI 83 (b) VII 83 (c) VII 84 (c) VIII 47 (c) IX 44 (c) IX 51 (c) X X S1 (c) X S2 (d) X S3 (d) X S4 (d) X S4 (d) X S5 (d) X S6 (d) X S7 (d) X S8 (d) X S1 (d) X S1 (d) X S2 (d) X S3 (d) X S4 (d) X S4 (d) X S5 (d) X S6 (d) X S7 (d) X S8 (d)		M.p., "C	193.5	184-189	199-202	258-260	260-262		264-266		224-230	220-222	226	allized products.
Compound No. IV VI VII VIII VIII XII XII XII XII XII		Yield,% (a)	45 (b)	(q) 6 <i>L</i>	83 (p)	63 (c)	47 (c)		44 (c)		51 (c)	(q) 68	(q) 99	are of recryst F, %: 6.39. F
		Compound No.	2	>	VI	ПЛ	ШЛ		×		×	×	пх	

(2) Abstracted from the M.S. thesis of K. H. Ford, University

(2) Abstracted from the large and solution of Pennsylvania, 1966.
(3a) W. Gauss and S. Petersen, Angew. Chem., 69, 252 (1957);
(b) Ibid., 70, 703 (1958).
(4) M. F. Sartori, Chem. Rev., 63, 279 (1963).
(5) Y. T. Pratt and N. L. Drake, J. Am. Chem. Soc., 77, 37 (1955).

(6) M. R. W. Levy, M.S. thesis, University of Pennsylvania, 1962. (7a) J. Adachi, Nippon Kagaku Zasshi, 76, 312 (1955); (b) Ibid., 779 (1955).

Received August 23, 1966

Philadelphia, Pennsylvania 19104